Next generation g-2experiment at Fermilab

J. Kaspar, University of Washington for g-2 collaboration

magnetic dipole moment of muon

torque experienced in external magnetic field, spin -> intrinsic magnetic dipole moment, experiment measures how fast spin rotates

g-2 experiment at BNL

E821 (1999 - 2006):

 $a_{\mu} = 0.001 \ 165 \ 920 \ 89 \ (63) \ (\pm 0.54 \ ppm)$

Figure 1.10: A picture from 1984 showing the attendees of the first collaboration meeting to develop the BNL g-2 experiment. Standing from left: Gordon Danby, John Field, Francis Farley, Emilio Picasso, and Book Kinner, Knowley for the Bulley Norman Member and Book Combiner.

A highly cited result

Standard Model prediction

SM contributions

	Value ($\times 10^{-11}$) units
QED $(\gamma + \ell)$	$116584718.853 \pm 0.022 \pm 0.029_{\alpha}$
HVP(lo)*	6923 ± 42
HVP(ho)	-98.4 ± 0.7
H- LBL	105 ± 26
$\mathbf{E}\mathbf{W}$	$154\pm1\pm2$
Total SM	$116591802 \pm 42_{\text{H-LO}} \pm 26_{\text{H-HO}} \pm 2_{\text{other}} (\pm 49_{\text{tot}})$

SM had. vacuum polarization

BNL E821 statistically limited

E989: 38 institutes, >150 members

Domestic Universities

- Boston
- Cornell
- Illinois
- James Madison
- Massachusetts
- Mississippi
- Kentucky
- Michigan
- Michigan State
- Mississippi
- Northern Illinois University
- Northwestern
- Regis
- Virginia
- Washington
- York College
- National Labs
 - Argonne
 - Brookhaven
 - Fermilab
- Consultants
 - Muons, Inc.

- Frascati,
- Roma 2,
- Udine
- Pisa
- Naples
- Trieste

China:

- Shanghai

The Netherlands:

Germany:

Dresden

Japan:

- Osaka

Russia:

- Dubna
- PNPI
- Novosibirsk

University College London

Liverpool

Oxford

Rutherford Lab

Korea

KAIST

D.W. Hertzog, Co-Spokesperson, hertzog@uw.edu

B.L. Roberts, Co-Spokesperson, roberts@bu.edu

C. Polly, Project Manager

principles of the experiment

principles of the experiment

- 1. source of polarized muons (0.95 polarization)
- 2. precession proportional to (g 2)
- 3. magic momentum
- 4. parity violating decay (positron reports on spin)

1. source of polarized muons

- pion decay into muon
- it's parity violating decay
- spin prefers opposite direction to momentum (for positive pion)
- pions come from protons hitting Li target

1. source of polarized muons

- Recycler
 - 8 GeV protons from Booster
 - Re-bunched in Recycler
 - New connection from Recycler to P1 line (existing connection is from Main Injector)
- Target station
 - Target
 - Focusing (lens)
 - Selection of magic momentum
- Beamlines / Delivery Ring
 - P1 to P2 to M1 line to target
 - Target to M2 to M3 to Delivery Ring
 - Proton removal
 - Extraction line (M4) to g-2
 stub to ring in MC1 building

2. precession proportional to g-2

$$\omega_C = \frac{eB}{mc\gamma}$$
 $\omega_S = \frac{geB}{2mc} + (1 - \gamma)\frac{eB}{\gamma mc}$

$$\omega_a = \omega_S - \omega_C = \left(\frac{g-2}{2}\right)\frac{eB}{mc} = a\frac{eB}{mc}$$

3. magic momentum

electric quadrupole used for vertical focusing

$$\vec{\omega}_a = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} \right]$$

select γ = 29.3, muon momentum 3.094 GeV

4. parity violating decay

- muon -> electron and two neutrinos
- electron carries information on muon's spin
- positron prefers spin direction
- electron would prefer opposite direction

single event

collect billions of events

extract frequency wa

measure magnetic field

- pulsed NMR with free induction decay
- to measure Larmor frequency of proton ω_p
- in the same magnetic field B

combine together

 $\mu_{\mu}/\mu_{p} = 3.183 \ 345 \ 24(37) \ (120 \ ppb)$ = 3.183 345 39(10) (31 ppb)

> External Muonium Hyperfine Expt.

old ring, new instrumentation

accelerator

accelerator: delivery ring

- high quality muon beam polarization 0.95
- muon momentum spread < 2%
- no protons, no pions

inflector, kicker, scraping

Item	Factor	Value per fill
Protons on target		10^{12} p
Positive pions captured in FODO, $\delta p/p = \pm 0.5\%$	1.2×10^{-4}	1.2×10^{8}
Muons captured and transmitted to SR, $\delta p/p = \pm 2\%$	0.67%	8.1×10^{5}
Transmission efficiency after commissioning	90%	7.3×10^{5}
Transmission and capture in SR	$(2.5 \pm 0.5)\%$	1.8×10^4
Stored muons after scraping	87%	1.6×10^4
Stored muons after 30 μs	63%	1.0×10^4
Accepted positrons above $E = 1.86 \text{ GeV}$	10.7%	1.1×10^3
Fills to acquire 1.6×10^{11} events (100 ppb)		1.5×10^{8}
Days of good data accumulation	17 h/d	202 d
Beam-on commissioning days		150 d
Dedicated systematic studies days		50 d
Approximate running time		$402 \pm 80 \text{ d}$
Approximate total proton on target request		$(3.0 \pm 0.6) \times 10^{20}$

muon beam distribution

NMR probes in a trolley

shimming

detectors: tracker, calorimeter

added tracking

calorimeter

segmented (6x9) PbF2 calorimeter with SiPM readout (Hamamatsu)
Cerenkov light
PMT-like pulse shape

waveform digitizers

800 MHz in uTCA crate

excellent pile-up resolution

experiment status:

going forward rapidly.

experiment under construction

big move, BNL to Fermilab

ring re-assembly

cool-down & ramp-up in Spring 2015

calorimeter at SLAC

- energy resolution
- **timing** resolution
- energy scale linearity
- energy scale stability
- ☑ PMT-like pulse shape

tracker at Fermilab

working prototype

drift time

kicker at Cornell

- **Triaxial Blumlein line**
- mew kicker electrode geometry

quads at BNL

NMR probes at UW

- frequency resolution
- frequency stability (temp, ...)

trolley at ANL

and many others ...

g-2 summary

- precision measurement of g-2
- 4 times better than the previous BNL experiment
 0.54 ppm -> 0.14 ppm
- test of Standard Model, sensitive to New Physics
- taking data in early 2017